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Path integral with ghosts for the bosonic string propagator 

Carlos R Ord6iiezt, Mark A Rubint and Roberto Zucchini$§ 
t Theory Group, Rockefeller University, New York, NY 10021, USA 
$ Physics Department, New York University, New York, NY 10003, USA 

Received 15 March 1988, in final form 26 January 1989 

Abstract. We compute the propagator for the open bosonic string using the Polyakov path 
integral formalism, both with and without ghosts. 

1. Introduction 

String field theory [l-71 and the Polyakov path integral [8-141 are two complementary 
techniques for treating problems in string physics. The former is potentially of use for 
studying non-perturbative questions, while the latter has the advantage of manifest 
duality in its basic formulation. It is thus of interest to understand, in as detailed a 
manner as possible, the connections between the two formalisms. 

The most thoroughly studied gauge-covariant string field theory is that of Witten 
[2]. The free theory is a theory of open strings/(, in which the fields depend not only 
on the string’s spacetime coordinates, but also on ghost coordinates related to the 
string’s embedding in two-dimensional parameter space [6]. The free propagator for 
the Witten theory has been computed in [7]. 

However, to the best of our knowledge, neither the free open-string propagator, 
with or without ghosts, nor any amplitude with ghosts?, has been computed using the 
Polyakov path integral formalism. Thus, the present work. 

2. The propagator without ghosts 

We want to compute to lowest order the amplitude A ( X i  + X,) for an open string to 
propagate from X ? ( a )  to X y ( o ) ,  where X ? ( a )  and X l ; ( a )  are two arcs in spacetime. 
The Polyakov path integral method allows one to obtain the Euclidean theory amplitude 
A E ( X i  + X,) through the formula 

( 2 . l a )  

8 Present address: Max-Planck-Institut fur Physik und Astrophysik, Werner Heisenberg Institute for Physics, 
8000 Munich 40, Federal Republic of Germany. 
11 It has been proposed that the interacting theory automatically contains closed strings as well [ 5 ] .  
T After the completion of this work we became aware of [15] ,  where the bosonic open- and closed-string 
propagators are computed in a manner different from that of the present paper, and of [16], where vacuum 
wavefunctionals with ghosts are computed. Subsequent work on string propagators with ghosts has appeared 
in [17]. A brief description of the present work appeared in [24]. 
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where S is the Polyakov action: 

s=s[gab, x’l 
= f T d2a&gabaa xgab x’, (2.lb) 

Here U’  and U’ are the coordinates of the string worldsheet. For definiteness, we shall 
consider U’ as a spacelike coordinate and U’ as a timelike coordinate, even though in 
Euclidean theory this distinction is purely conventional. In the case we are considering, 
the worldsheet M has the topology of a square. Thus, M can be parametrised in an 
obvious fashion by making U’  and u2 vary in the closed interval [0,1]. gab is the 
metric of the worldsheet and g is the determinant of gab; Xp, p = 1 , .  . . ,26, are the 
coordinates describing the string’s embedding in 26-dimensional Euclidean space R26. 
T, the string tension, will be set equal to 1 (corresponding to ( Y ’ = + ~ T  in the other 
common notation). 

The path integral is first performed over all embeddings X’ satisfying the Neumann 
boundary condition N”d,X’ = O  at U ’  =0,  1 ( N ”  is the inward unit normal to the 
boundary of the worldsheet when the metric is gab), and X’ = XP 0 XI at u2 = 0, 
X’ = X; 0 I;, at u2 = 1 for some reparametrisations I;, and Zf of the interval [0, 11. 
Then, the path integral is performed over the metrics gab and the reparametrisations 
I;, and Physically, the Neumann boundary condition at U’  = 0, 1 implies that there 
is no net flux of momentum through the ends of the propagating string. Mathematically, 
we need to have a well defined classical problem. The reparametrisations Z, and I;, 
are introduced because, in principle, the parametrisation of the embedding Xc” at 
u2 = 0 , l  may not match that of the boundary arcs X r  and Xy . Since the amplitude 
AE(X, + X,) is geometrical in nature it cannot depend on the parametrisations of Xr 
and X?. Thus the integration over I;, and I;, must be performed. 

As is well known, the Polyakov action enjoys two types of gauge symmetry: general 
coordinate invariance and Weyl rescaling invariance. However, the path integral 
measures [Dg], [DX] enjoy only general coordinate invariance [8-lo]. We expect the 
resulting Weyl anomaly to cancel in 26 dimensions, as it does at the level of the 
partition function. While this is almost certainly true, the proof of this fact is quite 
difficult. Indeed, the worldsheet under consideration has corners, and these may 
contribute to the Weyl anomaly. Alvarez’s calculation [9], therefore, does not apply. 
For the time being, we assume that the Weyl anomaly cancels, and divide the path 
integral by the infinite volume VWWGC of the string gauge group to get a finite result. 

To compute the functional integral ( 2 . 1 ~ )  we must fix the gauge. The gauge-fixing 
procedure has been analysed extensively in the literature [8-131. Thus we shall restrict 
ourselves to stating the result: 

AE(X, + xf )  = I dx,  dxf IoE dh exP(-S[$,b(A 1, X $ ( A ,  XI, E,, x?, x;)]) 

I, 

Here $ & ( A )  is the Teichmuller metric. For the simple topology we are considering, 
there is only one Teichmuller parameter A, varying in the semi-infinite interval 30, +CO[. 

A is the scalar Laplacian, defined by 

(2.3) 
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where C#I is any worldsheet scalar function. The operator P maps contravariant vector 
fields 7)' into traceless symmetric covariant 2-tensors (the trace is taken with respect 
to the metric &(A)): 

( 2 . 4 ~ )  

where V, is the covariant derivative associated with the metric i a b ( h ) .  The operator 
P' is the formal adjoint of P and maps traceless symmetric covariant 2-tensors Lab 

into contravariant vector fields: 

( p v  ) a b  = i a c V h f 7 c  + i b c V a v  - i a h V c f 7  

(2.4b) 

In the case of a square worldsheet the operator P has no zero modes (zero modes of 
P are called conformal Killing vectors). Conversely, the operator Pt has a traceless 
symmetric zero mode +ab (traceless symmetric zero modes of Pi are called Teichmuller 
deformations). The symbols involving +ab are defined as follows: 

l a b  *cd (PT5)a =-2g g vc5dh .  

(6;; I[$)) = d 2 d ( g ^ ) g ^ a b i c d & ' 6 ~ ~  (2.5) 
M 

where Sh;l is a covariant 2-tensor. Finally, X : ( h ,  X,, 
classical problem: 

X Y ,  X y )  is the solution of the 

AX:  = 0 

N " d , X :  = 0 

x:  =xy 0 z, 
at U' = 0,1 

at u 2 = 0  

(2.6a) 

(2.6b) 

( 2 . 6 ~ )  

x : = x ~ o C ,  a t u 2 = 1 .  (2.6d) 
To explicitly compute the integral (2.2) we need to know the explicit form of the 

(2.7a) 

O < A < O O .  (2.76) I ( 2 . 7 ~ )  

Next, we have to specify the boundary conditions defining the eigenvalue problems 
for the operators A and P'P The usual type of reasoning [9,12] leads to the following 
boundary conditions on contravarient worldsheet vector fields 7) and traceless sym- 
metric worldsheet 2-tensors l a b :  

Teichmuller metric. Following Cohen et a1 [ 121 we take the following & , ( A  ): 

i l l ( A ) ( U ' ,  r2) = 1 

i 1 2 ( A ) ( U 1 ,  U 2 )  = o  
i 2 2 ( A ) ( g 1 ,  u2)=A2 

(2.8a) 

(2.8b) 

(2.9a) 

(2.96) 

(2.1 Oa ) 

(2.10b) 

(2.11a) 

(2.11b) 
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In equation (2.2) the dependence of the amplitude AE(Xi +. X,) on Xr and X;t is 
obtained by splitting an arbitrary embedding X” into the sum X$+k’, where X$ is 
defined by equations (2.6a-d) and %” is a shift. The functional integration over 2’ 
yields the determinant of the scalar Laplacian. As X’ and Xz obey the same boundary 
conditions, 2’ must obey the mixed Dirichlet- Neumann boundary conditions 

k”(a’,O)=2”(al, 1 ) = 0  (2.12a) 

a,2’(0,a2)=a,k’(1,a2)=0. (2,126) 

For a detailed discussion see [14]. 
The evaluation of the propagator (2.2) now proceeds parallel to the evaluation of 

the free closed-string propagator (sum over worldsheets with the topology of a cylinder) 
of [12]. We find 

AdXI + Xf) 
cs 

= [ dXt dXf lOmdA A - ’ 3  n [ l  -exp(-2~rnA)]-’~ 
n = l  

7rm X 

+exp[ ( -&,o-xl,o)~- m = l  c 4 sinh(7rmA) 

x [ (Xi ,  + X:,) cosh( 7rmA) - 2 x ~ , X ~ , , , , ]  + T A  (2.13) 

This can be rewritten as an operator expression. The Euclidean propagator for a 
free Newtonian particle of mass 7r (in 26 spatial dimensions) to go from X$ to XT,, 
in time T A  is [ 181 

where p*g is the momentum conjugate to the particle’s position 2;. (Carets denote 
operators.) For a particle in a harmonic oscilator potential with angular frequency 
w = m: 

CXLm I exp( - T A f i m )  I X1.m) 
m 

= (1 - exp( -27rmA ) 

7rm 
exp( 2 sinh( 7rmA) [(X&,,+X?.,) cosh(7rmh)-2X,,, X,,,]) (2.15) 

where 

fim =&/2r+f7rm22’,  (2.16) 
and p*z is the momentum conjugate to the particle position kz. So (2.13) becomes 

AE(X, +XI) = [ dE, dX, 

X 

dA [ 1 - exp( -27rmA )](X.’ 1 exp[ - T A  ( $ 4 2 ~  + fi - 1 )]  1 Xi)  

(2.17) 
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where 
X 

A =  Am 
m = l  

( 2 . 1 8 ~ )  

(2.18b) 

( 2 . 1 8 ~ )  

From [12], 
X x n [ l - e x p ( 2 7 " ) ] =  ( - l )m exp[-.rrA(3m2+m)] (2.19) 

m = l  W l - X  

so (2.17) can also be written as 

X 

= [dX,dX, [ dA 2 (-l)m 
J J O  m = - a  

(2.20) 

or 

AE(Xi + xf) 
X =l dXr dX, 2 ( - l )"(XfI(p^~/2.rr+A-l+3m2+m)- ' IX') .  (2.21) 

m = - z  

If the initial and final states are 'pointlike', i.e. 

x;, = XZm = 0 m f O  (2.22) 

then the integration over reparametrisations of the boundary is irrelevant and may be 
dropped. The amplitude (2.17) becomes 

AE(Xl + X,, pointlike) 

= lox dA i, [ 1 - exp( - 2 ~ m A ) l - ' ~ ( X  ' 1  exp[-rA(&/2lr) - l)] 1 Xi) .  

(2.23) 

Using the Taylor expansion 

(2.24) 

a,= 1 a ,  = 12, . . . , a, 3 0 for all n 
we obtain 

X 

AE(X,+Xf, pointlike)= c ~,(X-~I(p^~/2.rr+2n-I)-'IX') (2.25) 
n =o 

as the transition amplitude between pointlike states. This expression is identical to 
the one obtained if we compute the transition amplitude between pointlike states in 
the light cone gauge. 
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3. The propagator with ghosts 

So far, the integrand in the path integral has been a functional of the spacetime 
coordinates X p ( a )  and the two-dimensional metric gob( a ) .  After gauge fixing, we 
have obtained expressions involving only the operators $:, n 3 0, X :  , n > 0, and the 
states (Xi)  and l X f ) ,  Ghost variables-anticommuting c-numbers and their operatorial 
counterparts-enter when we represent (det‘ Pi P)’” using Grassmann integration. 
Although we have an explicit expression for (det‘ PtP)’’*, the representation by 
Grassmann integration is extremely useful, especially in string field theory [2-71. 

The ghost field c“(  a )  is a Grassmann-odd contravariant vector field. We demand 
that c ” ( a )  obey the boundary conditions (2.8a, b )  and (2.10~2, b )  with ~ ‘ ( a )  replaced 
by c u ( a ) .  In this way we can Fourier-expand c ” ( a )  with respect to an orthonormal 
basis @: formed by the eigenfunctions of the operator P’P, (Y being an index labelling 
the distinct eigenmodes of PtP. Thus 

c ( a)  = z , c, (D ( a ) 
where the C, are Grassmann-odd numbers. 

The antighost field bob( a )  is a Grassmann-odd traceless symmetric tensor field. As 
with ~ ‘ ( a ) ,  we demand that b o b ( a )  obey the boundary conditions (2.9a, b )  and 
(2.114 b )  with l o b ( a )  replaced by b o b ( @ ) .  This allows us to expand b o t ( a )  with 
respect to an orthonormal basis qpob(a) formed by eigenfunctions of P P ’ ,  p being 
an index labelling the distinct eigenmodes of PPt. In this way we get 

(3.2) 
where the B, are Grassmann-odd numbers. 

It can be shown [9] that PIP and PP’ have the same non-zero eigenvalues E,. 
Moreover, if @: and v u o b  correspond to the same non-zero eigenvalue E, we may 
choose as follows: 

(3.1) 

bob ( ) = z pBp q p a b  ( a 

* o o b ( a )  = E ~ ” * ( ~ @ e ) o b ( ~ ) .  (3.3) 

bob ( a )  = zolBol q o o b  ( a )  -I- 8 q o b  ( a )  (3.4) 
where Y o b  is the Teichmuller deformation and the Tnob are given by (3.3). The sum 
is over the same set of eigenmode labels as in (3.1) because in the case we are studying 
P’P has no zero modes. 

In this way (3.2) may be rewritten as 

The ghost action is given by 

(3.5a) S gh = -  I d2 ‘JJ(g)&bC‘(Ptb)b.  

Note that in order for s g h  to be real under Hermitian conjugation, either bob must be 
Grassmann-real and cu Grassmann-imaginary, or vice versa. We choose the convention 

(3 .5b)  eo*  = 

b$ = bob. ( 3 . 5 c )  

Sgh=-~,E~’2C,B,.  (3.6) 

[ D c b b ]  =II, dC, dB,. (3.7) 

By introducing the expansions (3.1) and (3.4) into ( 3 . 5 ~ )  we get 

Note that there is no dependence on 8. The ghost functional measure is 
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This measure does not contain d8 .  Indeed, since the ghost action (3.6) does not depend 
on 8, the inclusion of d 8  in (3.7) would make the ghost functional integral identically 
zero. From (3.6) and (3.7) the standard formula: 

[Dcfib] exp( - S g h )  = (det’ f‘+P)’’’ 

follows easily. Equivalently, we can write this as+ 

( 3 . 8 ~ )  

[Dcfib] d 8 8  eXp( - Sgh) [DCDb]8 eXp( - sgh) = (det’ P’P)”’. (3.86) 

To compute the propagator with ghosts we proceed as follows. We have seen in 
the previous section that, in order to get the propagator without ghosts, we have to 
integrate over all embeddings taking certain values on the boundary. Therefore it 
seems plausible that, in order to get the propagator with ghosts, we should integrate 
over all ghost and antighost fields having certain values on the boundary. We therefore 
implement the ghost boundary conditions by inserting Grassmann 8-functions in the 
Grassmann integral (3.8). 

Which are the ghost boundary values mentioned above? First, since we are inter- 
ested in the open-string propagator with ghosts, the boundary values should be attached 
to the edges U’ = O  and U’ = 1 of the square. Moreover, the boundary conditions 
obeyed by c “ ( a )  and b , , ( a )  constrain the value of c ’ ( a )  and b , , ( a )  on those edges 
to be zero. So the only thing we can do is to assign the values of c ’ ( a )  and b , , ( a )  
on the same edges. This is compatible with the boundary conditions obeyed by c’( a) 
and b l l ( a ) t .  The value of b , , ( a )  on the boundary is determined by the tracelessness 
condition (in particular, it is A dependent). Let us call c, OX,, cfoXf the boundary 
values of c’( a) at U* = 0, 1, respectively. Here E, and X, are reparametrisations of the 
edges U’ = 0 and U’ = 1, respectively. Likewise, let us call b, 0 X I ,  6, 0 Xf the boundary 
values of b , , ( a )  at (+ ’=O,  1, respectively. From (3.1)-(3.4) we get the constraints 

1 5 

o =  =x.,c,Q:(~~ = U, 0) - C , ( X , ( ~ ) )  (3.9a) 

o =  rf(U) = ~,c,@:(d = U, 1) - c ~ ( x ~ ( ~ ) )  

0 = A, ( (+ 1 = XmBu4., 1 i ( (+I = U, 0) - 6, (z, ( U  1 
0 = Af ( U )  = Xa B,$, ( U ’  = U, 1 ) - b,-( C,( U ) ) .  

(3.96) 

(3.10a) 

(3.10b) 

(Note that in (3.10u, b )  we have dropped the term proportional to the Teichmuller 
mode, as it will be set equal to zero in any case by the factor 8 = S(8) in (3.8b).) 

Then to get the propagator with ghosts we simply have to replace (det’ PtP)’” in 
(2.2) by the following expression: 

[DcfibI exP(-Sg,) n r , ( U ) r , ( U ) A i ( U ) A , ( ~ ) .  (3.11) 

This is obtained by inserting the Grassmann 6 functions enforcing (3.9a, b )  and 
(3.10a, b )  in the integrand on the LHS of equation (3.8). Note that there is no natural 
order for the 8 functions. Therefore, the result is determined up to a sign. We now 
explicitly compute the Grassmann integral (3.1 1). 

t Recall that S (  8 )  = 8 if B is a Grassmann variable. 
See also comments preceding equation (3.39). 
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To begin with, we have to compute the eigenfunctions a.", and Y e a b .  In the present 
case the eigenmode label a can take either the values (m, n, 1) with m > 0 and n 3 0 
or the values (m, n, 2) with m 3 0  and n > 0. The eigenfunctions @ ( m , , , i l u ( u )  were 
computed up to normalisation in the previous section. The eigenfunctions Y(m,n , r ,ab (c )  
can be obtained by using (3.3) and (2.4a, b ) .  With the proper normalisation we find, 
at U ' = O  or I ,  

( 3 . 1 2 ~ )  

( 3 . 1 3 ~ )  

(3.13 6 )  

where 

E,,(A) = 2rr2(m'+ n' /A') .  (3.14) 

For brevity we have listed only the relevant values entering equations (3.94 b )  and 
(3.10a, b) .  Now we consider the union F of the two edges a' = 0 and U' = 1. Equations 
(3.12a, b )  and (3.13~1, b )  suggest that there are t\  

4,,,F(a1, a') = E u Z  sin(mrra') 

t~, , ,~(a ' ,  a') = ,sU2 cos(mval)  

where again a 2 = 0 ,  1 and E = *l. From (3.12-3. 

o convenient bases in F. They are 

6), we find 

(3.15) 

(3.16) 

(3.17) 

( 3 . 1 8 ~ )  

(3.186) 

Denote by c ( a ' ,  a2) a Grassmann-valued function on F such that c ( a ' ,  0) = c t ( E t ( u l ) )  
and c(al,  1) = q ( Z f ( a ' ) ) .  Likewise denote by b ( a l ,  a') the Grassmann-valued function 
on F such that b ( a l ,  0) = b, (E , (a l ) )  and b ( a l ,  1) = bf(Zf(a l ) ) .  Clearly b ( a ' ,  a') and 
c ( a ' ,  U' )  can be Fourier-expanded with respect to the bases dm,f (a ' ,  a') and 
+m.8(al, a'). Using (3.9~2, b )  and (3.10a, b ) ,  respectively, and keeping in mind the 
boundary conditions (2.8~1, b ) ,  (2.9~1, b ) ,  (2.104 b )  and (2.114 6)  

c ( a l ,  a') = 1 c m . , = 4 m . e ( a ' y  d = o ,  1 (3.19) 

b ( a ' ,  a') = 1 b m , f t J m , c ( a ' y  0') d = o ,  1 (3.20) 

m > O . E  =f I 

m a O , E = z I  
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where the c , , , ~  and 6,,,+ are Grassmann-odd numbers. By inserting (3.17)-(3.20) into 
(3.9) and (3.10) we get the following constraints: 

where 

(3.210) 

(3.21b) 

( 3 . 2 2 ~ )  

(3.226) 

( 3 . 2 3 ~ )  

(3.24~1) 

(3.24b) 

The forms (3.21) and (3.22) of the constraints (3.9) and (3.10) are particularly con- 
venient because everything is expressed in terms of the Fourier coefficients C(m,n,l) and 
B(,,, , , ,  which are the Grassmann integration variables. Therefore the product 
IIm (r,rJAIAf) on the R H S  of (3.11) reduces simply to the products n,,, (r, + 
r,) nnpO (An  +A;) ,  The actual calculation of the Grassmann integral (3.1 1) is tedious 
but straightforward?. The result is 

Agh = (det' P'P)"2bo,+lbo,-l 

(3.25) 

The determinant of PIP has been computed in [lo,  equation (4.5)]. 
The two numerical series are easily summed [19]: ( 3 . 2 6 ~ )  

2 -SI," 

i!!f = i[coth(Am) + l/sinh(Arrm)] 
rr I = ~  (An1)~+(21) 

1 
=a[coth(Arrm) - l/sinh(Arrm)]. ? !o (Am)2+(21+ 1) 

(3.26b) 

( 3 . 2 6 ~ )  

* See appendix. 
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Further, we have to express bm.+l and c,,,*~ in terms of the Fourier coefficient of bi(U),  
b,(cr), c , (u )  and c,(u) .  Now 

c i ( X , (  U ) )  = c k  sin( m m )  
m>O 

b i ( X i ( U ) )  = 1 bk cos(mmr) 
m=O 

b,(X,(U)) = b f ,  c o s ( m m ) .  
m P O  

( 3 . 2 7 ~ )  

(3.276) 

( 3 . 2 8 ~ )  

(3.28 b )  

Here c ; ,  c i ,  b ;  and bin are Grassmann-odd numbers depending on X,  and 2,-. It is 
easily seen that 

Cm,*I = + ( C m  * C L )  ( 3 . 2 9 ~ )  

b,,,*l = +( b L  * b.’,). 

By plugging (3.26)-(3.29) into (3.25) we get finally 

(3.29 b ) 

1 
(c;bf,+c’,bA) 

x ( 1 -  sinh( TAm) 
\ l  

(cosh(rrAm) ( c ; b L +  c f , b / , )  - c / , b L  -c’,b’, 

(3.30) 

1 
exP(sinh( *Am) 

The next and final step of our calculation will be that of expressing the RHS of 

The ghost operators are &, and &,, where m is any integer (see [ 2 0 ] ,  p 128). They 
(3 .30)  in terms of ghost operators and states. 

satisfy the anticommutation relations: 

The ghost vacuum is defined by 

(3.31 a )  

(3.31 b )  

( 3 . 3 1 ~ )  

( 3 . 3 2 ~ )  

(3 .326)  
The hermiticity properties are 

(3 .33a)  

(3 .33b)  
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In analogy with the bosonic case [21], define 
00 

Iw,p)= n exp(-wmpm - 2 ’ ’ ’ ~  m Ĉ  - m  - 2 1 / 2 p m b * - m - ~ - m b * _ m ) / 0 ) g h  (3.34) 
m = l  

where w,, pmr m > 0, are Grassmann-odd numbers. These states have the following 
properties, which follow immediately from (3.3 1)-(3.33): 

2 

(w‘,p‘I w,p)= n 2[w:pm+p:wm -p:w:- wmpm 1. 
m = l  

(3.35a) 

(3.35b) 

(3.35c) 

The divergent factor nz=, (2) can be absorbed in the normalisation or 6-function 
regularised [23]. The * denotes Hermitian conjugation. The ghost Hamiltonian is 

* A  
m 

f i g h =  m(t-,,,bm+b-,,,tm). (3.36) 
m = l  

From (3.31a-c) and [22] it follows that 

exp( - Tfigh)C*-m exp(Tfigh) = exp( - Tm)t_, 

exp( - TH,h)b-, exp(7Agh) = exp( - .rm)b*-,. 
By using (3.31)-(3.34) and (3.37) we can compute the matrix element 

(3.37a) 

(3.378) 
A A  

(w’, P’ I exp( - Thigh) I w, P) 

When w’* = w‘ and p‘* = -p’  this becomes 

(w’,P’I exp(-Tfigh)IW,P) 

m = l  

sinh( m )  
= [ -exp( -27m)l exp 

m = l  

(3.38a) 

(3.38b) 

This looks very much like (3.30) with w, + b k ,  w k  + bf,, pm + cL, pk + c’, . (From 
(3.56, c) and (3.35a, b), we see that this identification is consistent regarding the 
properties of these variables under Hermitian conjugation.) 
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We also see from (3.354 b) and (3.31~1-c) that bm and c, are the (Grassmann- 
valued) eigenvalues of operators whose anticommutator is zero. Thus it is consistent 
to simultaneously specify the values of all the c, and b, equivalently ( c (  a )  and b( a ) )  
at the* boundary. (In manipulating expressions involving matrix elements of the t,,, 
and 6, between the coherent states (3.34), it is helpful to keep in mind the inner 
product ( 3 . 3 5 ~ )  and the fact that a Grassmann number squares to zero.) 

Putting everything together we find 

A,, =constant h’”exp( - rh/12)bbb{(bf, c’l exp( - h r f i g h )  I b‘, c’). (3.39) 

Now we replace (det’ P’P)’’’ in equation ( 2 . 2 )  by A,, and we develop the calculation 
on the same lines as in the previous section. The result is 

AE(X’,  b‘, C‘ + X f ,  b’, c’) 

x (X’l exp( - A.r(j?i/27~+ A - 1))  ( X i )  

= I dZ, dZ,bbb$(X’, bf, ~ ’ 1 ( ~ ~ / 2 r + ~ + ~ , ~ - l ) - ’ I X ~ ,  b’, c’)  ( 3 . 4 0 ~ )  

where 

IX’, b‘, c’) = IX’)  I b’, c’) (3.40 b) 

IX’, b’, c’) = IX’) Ib’, c’). 

If we integrate the amplitude A E ( X ’ ,  b‘, c’ + X ’ ,  b‘, c’) with respect to bk , c k ,  b/, and 
cf, we get the amplitude A E ( X ‘  + X’).  Indeed, from (3.30), (3.39) and ( 3 . 4 0 ~ )  we have 

cs 

dbb db$ JJ dbk db; dck dc’, AE(X’,  b‘, C ’  + X’, b’, c’) = AE(X’ + X’) .  (3.41) I m = l  

To obtain this equation we used the fact that only factors coming from the term quartic 
in the ghost variables with m > 0 in (3.30) survive under Grassmann integration in (3.41). 

4. Discussion 

We now wish to examine the relation between the preceding path integral computation 
and string field theory. To this end, we shall summarise briefly some properties of 
string fields [3]. 

An open bosonic string field is a functional @[X@((T), p(a ) ,  y ( a ) ]  of a parametrised 
arc X p ( g )  in 26-dimensional Euclidean space and two parametrised arcs in a 
Grassmann vector space. To comply with the conventions of the previous sections we 
assume that a varies in the interval [0, 11 and X p ( a )  represents an open-string 
configuration. Thus it must satisfy the boundary condition 

d d 
d a  d u  
- x p  (0) = - x p  ( 1 ) = 0. 
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P ( a )  and y ( a )  represent the configurations of the ghost field components 
b l l ( u l ,  U') I , 1 , , , , 2 = ~  and cl(ul ,  (T ) 1 ol=,, ,2=o, respectively. Thus, they satisfy the boun- 
dary conditions 

2 

d d 
- P ( 0 )  =--p(l) = o  ( 4 . 2 ~ )  
d a  d a  

y ( 0 )  = y (  1 )  = 0. (4.26) 

From ( 4 . 2 ~ )  it follows that P ( a )  has, in general, a non-vanishing zero mode Po,  Define 

P ( 4  = P ( a )  -Po .  (4.3) 

Clearly /?(a) satisfies ( 4 . 2 ~ )  with P ( a )  replaced by P(a). Moreover, we can write a 
string field as follows: 

@[XP(a),  P ( ( + ) ,  ?((+)I 
= @[XP(a),  P b L  A V ) ,  Pol 
= + [ X * ( a ) ,  m, r(a)l + P 0 4 [ X P ( a ) ,  h>, Y(U)I. (4.4) 

All physical fields are contained in C$ [3]. In the representation we are using, the first 
quantised ghost operators are given by 

go-+ P o  (4.5~1) 

(4.5b) 

The Siegel gauge constraint is 

&@ = Po@ = 0. (4.6) 

From (4.4), ( 4 . 5 ~ )  and (4.6) we see easily that the Siegel gauge is equivalent to 
demanding 

$IO. (4.7) 

ax', Pf, y'lx', Pi,  ril =((@[X', P', r'I@[Xi, P i ,  $1)) (4.8) 

The two-point function of the string field @ is, by definition, 

where (( )) denotes the second-quantised vacuum expectation value. In the Siegel gauge 
(4.6), (4.8) reduces to 

It is thus consistent to identify 

r[f; r]=(x', b', c f I ( p l ~ / 2 . r r + A + ~ g h - 1 ) - ' I X ' ,  b ' ,  c ' )  (4.10) 

(see (3.40)). The above identification can be justified as follows. r[f; i'] is not a 
reparametrisation-invariant object. Therefore, if there is a connection at all, the 
integration over the boundary reparametrisation in (3.40) must be dropped. Further, 
the labels of the states 1x9 bf, c f )  and IX', b', c')  match the labels f and i'Lrespectively. 
Finally, we note that the operator (~$277)  + A + f i g h  - 1 is the operator L~ of the BRST 
Virasoro algebra. Therefore the RHS of (4.10) must contain all the propagating fields. 
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The above discussion is not a proof but a plausibility argument. However, it can 
be proved explicitly that the states (3.34) form a complete set, which implies that 
r[?; i’] is indeed the propagator for the string field + [ X ’ ( a ) ,  $(U), ~ ( a ) ] .  Thus the 
Polyakov path integral, performed between initial and final states /Xi, b’, ci), lXf, b’, cf) 
of definite parametrisation, provides field-theoretic Green functions in the Siege1 gauge. 
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Appendix 

We outline here the computation which leads to equation (3.25). In the notation of 
03, the path integral (3.11) becomes 

x [  m>O n r x ] [  m=O n s;a;]. (Al l  

It proves convenient to write (Al)  as the product of three factors: 

Agh = JoJ+J-. (‘4-2) 

Jo is the product of all the factors in (Al)  in which the index m is zero; J+ is the 
product of all the factors in (Al)  in which the index m is positive and the index n is 
even and J-  is the product of all the factors in (Al)  in which the index m is positive 
and the index n is odd. That is, 
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Consider first Jo .  Expanding the exponential in (A3): 

The rules of Grassmann integration state that an integral vanishes unless the integrand 
has precisely one factor of each Grassmann variable with respect to which the itegration 
is being performed. So, any term in the integrand of (A6) which makes a non-zero 
contribution to the integral must be proportional to 

The only such quantity is the product of all the terms involving EA? in the square 
bracket times the respective last terms in the last two large brackets: 

2 2 1/2 

= bo,+bo.- f l > O  n (Y) . 

As we have in the body of this paper, we disregard in this appendix A-independent 
multiplicative factors in evaluating infinite products. 
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For a term in the integrand of (A9) to give a non-zero contribution to the integral, it 
must be proportional to 

( m>O II n30 ,even  C ( m . n . l ) B ( m . n . l ) ) (  m>O n > O ,  n even c ( m . n . 2 ) ~ ( m . n , 2 ) ) .  ( ~ 1 0 )  

Terms proportional to (A10) can arise in one of two ways. Either all of the factors of 
C(m,n,l), B(m,n,l) ,  C(m,n,2) and B(m,n,2) can come from the third and fourth large brackets 
of (A9); this gives a term proportional to 

Or we can obtain all the factors needed for (A10) from the third and fourth large 
brackets in (A9), except for a single C(m,n,l)B~m,n,l)-say the one with m = F ,  
n = v-which we get from the two square brackets. Such a term is proportional to 

m f p  n f u  

(A121 
m>O n>O,even 

Thus, (A9) is equal to 

('413) 

Note that overall factors of E !,$ can be included or deleted as convenient, since E !,$ 
is independent of A (see (3.14)). Using (3.14), ( 3 . 2 3 ~ )  and (3.24a), (A13) becomes 

In like manner, we obtain 

Using the above two equations and (A8) in (A2) yields (3.25). 
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